
8/27/2018 External Table: SparkMeasure, a tool for performance troubleshooting of Apache Spark workloads

https://externaltable.blogspot.com/2018/08/sparkmeasure-tool-for-performance.html 1/4

Luca's blog on databases, data platforms, performance.

External TableExternal Table

F r i d a y , A u g u s t 2 4 , 2 0 1 8

SparkMeasure, a tool for performance troubleshooting of Apache Spark
workloads

 SparkMeasure simplifies the collection and analysis of Spark task metrics data. It is also intended as a working example of how to
use Spark listeners for collecting and processing Spark performance metrics.
The work on sparkMeasure has been previously presented in this blog with examples. Recently, an updated version of sparkMeasure
(version 0.13) introduces additional integration for the PySpark and Jupyter environments, improved documentation and additional
features provided by the community via PRs (many thanks to the contributors).
At CERN Spark and Hadoop service we have been using sparkMeasure in a few occasions and found it useful for understanding the
performance characteristics of Spark workloads and for performance troubleshooting.

You can find sparkMeasure, its documentation with examples in the sparkMeasure development repository on GitHub and/or in its
mirror cerndb repo.
You can deploy sparkMeasure from Maven Central or build with "sbt package". PySpark users can find the Python wrapper API on
PyPI: "pip install sparkmeasure".

Interactive: measure and analyze performance from shell or notebooks: using spark-shell (Scala), PySpark (Python) or
Jupyter notebooks.

Code instrumentation: add calls in your code to deploy sparkMeasure custom Spark listeners and/or use the classes
StageMetrics/TaskMetrics and related APIs for collecting, analyzing and saving metrics data.

"Flight Recorder" mode: this records all performance metrics automatically and saves data for later processing.

Scala shell and notebooks

PySpark and Jupyter notebooks

Instrument Scala code

Instrument Python code

Flight Recorder mode

Notes on implementation and APIs

Notes on metrics analysis

TODO list and known issues

SparkMeasure

Download and deploy with examples

Use sparkMeasure for measuring interactive and batch workloads

Documentation and examples

Architecture diagram

Luca Canali

Geneva,
Switzerland

@LucaCanaliDB

View my complete profile

About Me

Luca's talks, articles and blog
posts list

Blog of the database services
at CERN

Luca's Twitter

Luca's GitHub

Links

▼ 2018 (1)

▼ August 2018 (1)

SparkMeasure, a tool for
performance
troubleshooti...

► 2017 (4)

► 2016 (9)

► 2015 (10)

► 2014 (11)

► 2013 (10)

► 2012 (15)

Blog Archive

Follow by Email

Email address... Submit

Member of the Oak Table Network

 Mehr Blog erstellen Anmel

https://externaltable.blogspot.com/
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Spark_TaskMetrics.md
https://externaltable.blogspot.com/2017/03/on-measuring-apache-spark-workload.html
https://github.com/LucaCanali/sparkMeasure
https://github.com/cerndb/sparkMeasure
https://mvnrepository.com/artifact/ch.cern.sparkmeasure/spark-measure
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Scala_shell_and_notebooks.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Python_shell_and_Jupyter.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Instrument_Scala_code.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Instrument_Python_code.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Flight_recorder_mode.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Notes_on_implementation_details.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Notes_on_metrics_analysis.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/TODO_and_issues.md
https://www.blogger.com/profile/06252662329568134677
https://www.blogger.com/profile/06252662329568134677
https://twitter.com/LucaCanaliDB
https://www.blogger.com/profile/06252662329568134677
http://canali.web.cern.ch/canali/
http://db-blog.web.cern.ch/
https://twitter.com/LucaCanaliDB
https://github.com/lucacanali
javascript:void(0)
https://externaltable.blogspot.com/2018/
javascript:void(0)
https://externaltable.blogspot.com/2018/08/
https://externaltable.blogspot.com/2018/08/sparkmeasure-tool-for-performance.html
javascript:void(0)
https://externaltable.blogspot.com/2017/
javascript:void(0)
https://externaltable.blogspot.com/2016/
javascript:void(0)
https://externaltable.blogspot.com/2015/
javascript:void(0)
https://externaltable.blogspot.com/2014/
javascript:void(0)
https://externaltable.blogspot.com/2013/
javascript:void(0)
https://externaltable.blogspot.com/2012/
http://www.oaktable.net/
https://www.blogger.com/
https://www.blogger.com/home#create
https://www.blogger.com/

8/27/2018 External Table: SparkMeasure, a tool for performance troubleshooting of Apache Spark workloads

https://externaltable.blogspot.com/2018/08/sparkmeasure-tool-for-performance.html 2/4

The tool is based on the Spark Listener interface. Listeners transport Spark executor Task Metrics data from the executor
to the driver. They are a standard part of Spark instrumentation, used by the Spark Web UI and History Server for
example.

Metrics can be collected using sparkMeasure at the granularity of stage completion and/or task completion (configurable)

Metrics are flattened and collected into local memory structures in the driver (ListBuffer of a custom case class).

Spark DataFrame and SQL are used to further process metrics data for example to generate reports.

Metrics data and reports can be saved for offline analysis.

1. Link to an example Python_Jupyter Notebook

2. Example notebooks on the Databricks platform (community edition): example Scala notebook on Databricks, example Python
notebook on Databricks

3. An example using Scala REPL/spark-shell:

bin/spark-shell --packages ch.cern.sparkmeasure:spark-measure_2.11:0.13

val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark)
stageMetrics.runAndMeasure(spark.sql("select count(*) from range(1000) cross join range(1000) cross join range(1000)").show())

The output should look like this:

Scheduling mode = FIFO
Spark Context default degree of parallelism = 8
Aggregated Spark stage metrics:
numStages => 3
sum(numTasks) => 17
elapsedTime => 9103 (9 s)
sum(stageDuration) => 9027 (9 s)
sum(executorRunTime) => 69238 (1.2 min)
sum(executorCpuTime) => 68004 (1.1 min)
sum(executorDeserializeTime) => 1031 (1 s)
sum(executorDeserializeCpuTime) => 151 (0.2 s)
sum(resultSerializationTime) => 5 (5 ms)
sum(jvmGCTime) => 64 (64 ms)
sum(shuffleFetchWaitTime) => 0 (0 ms)
sum(shuffleWriteTime) => 26 (26 ms)
max(resultSize) => 17934 (17.0 KB)
sum(numUpdatedBlockStatuses) => 0
sum(diskBytesSpilled) => 0 (0 Bytes)
sum(memoryBytesSpilled) => 0 (0 Bytes)
max(peakExecutionMemory) => 0
sum(recordsRead) => 2000
sum(bytesRead) => 0 (0 Bytes)
sum(recordsWritten) => 0
sum(bytesWritten) => 0 (0 Bytes)
sum(shuffleTotalBytesRead) => 472 (472 Bytes)
sum(shuffleTotalBlocksFetched) => 8
sum(shuffleLocalBlocksFetched) => 8
sum(shuffleRemoteBlocksFetched) => 0

 Main concepts underlying sparkMeasure

Getting started examples of sparkMeasure usage

https://github.com/LucaCanali/sparkMeasure/blob/master/docs/sparkMeasure_architecture_diagram.png
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Spark_TaskMetrics.md
https://github.com/LucaCanali/sparkMeasure/blob/master/examples/SparkMeasure_Jupyer_Python_getting_started.ipynb
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2061385495597958/2729765977711377/442806354506758/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2061385495597958/3856830937265976/442806354506758/latest.html

8/27/2018 External Table: SparkMeasure, a tool for performance troubleshooting of Apache Spark workloads

https://externaltable.blogspot.com/2018/08/sparkmeasure-tool-for-performance.html 3/4

sum(shuffleBytesWritten) => 472 (472 Bytes)
sum(shuffleRecordsWritten) => 8

Why measuring performance with workload metrics instrumentation rather than just using time?

Measuring elapsed time, treats your workload as "a black box" and most often does not allow you to understand
the root cause of the performance. With workload metrics you can (attempt to) go further in understanding
and root cause analysis, bottleneck identification, resource usage measurement.

What are Apache Spark tasks metrics and what can I use them for?

Apache Spark measures several details of each task execution, including run time, CPU time, information on
garbage collection time, shuffle metrics and on task I/O. See also this short description of the Spark Task
Metrics

How is sparkMeasure different from Web UI/Spark History Server and EventLog?

sparkMeasure uses the same ListenerBus infrastructure used to collect data for the Web UI and Spark EventLog.

Spark collects metrics and other execution details and exposes them via the Web UI.

Notably Task execution metrics are also available through the REST API

In addition Spark writes all details of the task execution in the EventLog file (see config of
spark.eventlog.enabled and spark.eventLog.dir)

The EventLog is used by the Spark History server + other tools and programs can read and parse the
EventLog file(s) for workload analysis and performance troubleshooting, see a proof-of-concept
example of reading the EventLog with Spark SQL

There are key differences that motivate this development:

sparkmeasure can collect data at the stage completion-level, which is more lightweight than
measuring all the tasks, in case you only need to compute aggregated performance metrics. When
needed, sparkMeasure can also collect data at the task granularity level.

sparkmeasure has an API that makes it simple to add instrumention/performance measurements in
notebooks and application code.

sparkmeasure collects data in a flat structure, which makes it natural to use Spark SQL for workload
data processing, which provides a simple and powerful interface

limitations: sparkMeasure does not collect all the data available in the EventLog, sparkMeasure
buffers data in the driver memory, see also the TODO and issues doc

What are known limitations and gotchas?

The currently available Spark task metrics can give you precious quantitative information on resources used by
the executors, however there do not allow to fully perform time-based analysis of the workload performance,
notably they do not expose the time spent doing I/O or network traffic.

Metrics are collected on the driver, which can be quickly become a bottleneck. This is true in general for
ListenerBus instrumentation, in addition sparkMeasure in the current version buffers all data in the driver
memory.

Task metrics values collected by sparkMeasure are only for successfully executed tasks. Note that resources
used by failed tasks are not collected in the current version.

Task metrics are collected by Spark executors running on the JVM, resources utilized outside the JVM are
currently not directly accounted for (notably the resources used when running Python code inside the
python.daemon in the case of PySpark).

When should I use stage metrics and when should I use task metrics?

Use stage metrics whenever possible as they are much more lightweight. Collect metrics at the task granularity
if you need the extra information, for example if you want to study effects of skew, long tails and task
stragglers.

What are accumulables?

Metrics are first collected into accumulators that are sent from the executors to the driver. Many metrics of
interest are exposed via [[TaskMetrics]] others are only available in StageInfo/TaskInfo accumulables (notably
SQL Metrics, such as "scan time")

How can I save/sink the collected metrics?

You can print metrics data and reports to standard output or save them to files (local or on HDFS). Additionally
you can sink metrics to external systems (such as Prometheus, other sinks like InfluxDB or Kafka may be
implemented in future versions).

How can I process metrics data?

You can use Spark to read the saved metrics data and perform further post-processing and analysis. See the
also Notes on metrics analysis.

How can I contribute to sparkMeasure?

SparkMeasure has already profited from PR contributions. Additional contributions are welcome. See the
TODO_and_issues list for a list of known issues and ideas on what you can contribute.

This work has been developed in the context of the CERN Hadoop, Spark and Streaming services and of the CERN openlab project onopenlab
data analytics. Credits go to my colleagues for collaboration. Many thanks also to the Apache Spark community, in particular to the
contributors of PRs and reporters of issues. Additional links on this topic are:

Link to 2017 blog post on sparkMeasure

FAQ

Acknowledgements and additional links

https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Spark_TaskMetrics.md
https://spark.apache.org/docs/latest/monitoring.html#rest-api
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Spark_EventLog.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/TODO_and_issues.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Notes_on_metrics_analysis.md
https://github.com/LucaCanali/sparkMeasure/blob/master/docs/TODO_and_issues.md
http://db-blog.web.cern.ch/blog/luca-canali/2017-03-measuring-apache-spark-workload-metrics-performance-troubleshooting

8/27/2018 External Table: SparkMeasure, a tool for performance troubleshooting of Apache Spark workloads

https://externaltable.blogspot.com/2018/08/sparkmeasure-tool-for-performance.html 4/4

Older PostHome

Subscribe to: Post Comments (Atom)

Posted by Luca Canali at 8:51 AM

Labels: performance, Spark, tools

Presentation at Spark Summit Europe 2017: "Apache Spark Performance Troubleshooting at Scale, Challenges, Tools, and
Methodologies"

Create a Link

Sign out

 Notify me

Enter your comment...

Comment as: dimoula.ioann

PublishPublish PreviewPreview

No comments:

Post a Comment

Links to this post

Simple theme. Powered by Blogger.

https://externaltable.blogspot.com/2017/09/performance-analysis-of-cpu-intensive.html
https://externaltable.blogspot.com/
https://externaltable.blogspot.com/feeds/320368956943475171/comments/default
https://www.blogger.com/profile/06252662329568134677
https://externaltable.blogspot.com/2018/08/sparkmeasure-tool-for-performance.html
https://externaltable.blogspot.com/search/label/performance
https://externaltable.blogspot.com/search/label/Spark
https://externaltable.blogspot.com/search/label/tools
https://spark-summit.org/eu-2017/events/apache-spark-performance-troubleshooting-at-scale-challenges-tools-and-methodologies/
https://www.blogger.com/share-post.g?blogID=7003976656201910397&postID=320368956943475171&target=email
https://www.blogger.com/share-post.g?blogID=7003976656201910397&postID=320368956943475171&target=blog
https://www.blogger.com/share-post.g?blogID=7003976656201910397&postID=320368956943475171&target=twitter
https://www.blogger.com/share-post.g?blogID=7003976656201910397&postID=320368956943475171&target=facebook
https://www.blogger.com/share-post.g?blogID=7003976656201910397&postID=320368956943475171&target=pinterest
https://www.blogger.com/blog-this.g
https://externaltable.blogspot.com/logout?d=https://www.blogger.com/logout-redirect.g?blogID%3D7003976656201910397%26postID%3D320368956943475171
https://www.blogger.com/profile/15078576639050910381
https://www.blogger.com/

